Polar Decomposition of Order Bounded Disjointness Preserving Operators

نویسنده

  • KARIM BOULABIAR
چکیده

We constructively prove (i.e., in ZF set theory) a decomposition theorem for certain order bounded disjointness preserving operators between any two Riesz spaces, real or complex, in terms of the absolute value of another order bounded disjointness preserving operator. In this way, we constructively generalize results by Abramovich, Arensen and Kitover (1992), Grobler and Huijsmans (1997), Hart (1985), Kutateladze, and Meyer-Nieberg (1991).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Strongly Diagonal Power of Algebraic Order Bounded Disjointness Preserving Operators

An order bounded disjointness preserving operator T on an Archimedean vector lattice is algebraic if and only if the restriction of Tn! to the vector sublattice generated by the range of Tm is strongly diagonal, where n is the degree of the minimal polynomial of T and m is its ‘valuation’.

متن کامل

Stability and Instability of Weighted Composition Operators

Let ǫ > 0. A continuous linear operator T : C(X) −→ C(Y ) is said to be ǫ-disjointness preserving if ‖(Tf)(Tg)‖ ∞ ≤ ǫ, whenever f, g ∈ C(X) satisfy ‖f‖ ∞ = ‖g‖ ∞ = 1 and fg ≡ 0. In this paper we address basically two main questions: 1.How close there must be a weighted composition operator to a given ǫ-disjointness preserving operator? 2.How far can the set of weighted composition operators be ...

متن کامل

ar X iv : 1 61 1 . 01 35 5 v 1 [ m at h . FA ] 4 N ov 2 01 6 Disjointness preserving C 0 - semigroups and local operators on ordered Banach spaces

We generalize results concerning C0-semigroups on Banach lattices to a setting of ordered Banach spaces. We prove that the generator of a disjointness preserving C0-semigroup is local. Some basic properties of local operators are also given. We investigate cases where local operators generate local C0-semigroups, by using Taylor series or Yosida approximations. As norms we consider regular norm...

متن کامل

Additive Maps Preserving Idempotency of Products or Jordan Products of Operators

Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...

متن کامل

The Measure of Non-compactness of a Disjointness Preserving Operator

Let E and F be Banach lattices and assume E∗ has no atoms. Let T : E → F be a norm bounded disjointness preserving operator from E into F . Then β(T ) = α(T ) = ‖T‖e = ‖T‖.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003